- Участвует в реакциях трансметилирования;
- Служит донором метильных групп;
- Учавствует в синтезе биологически активных веществ;
- Принимает участие в синтезе нуклеиновых кислот;
- Является акцептором метила для 5- метиленгидрофолат-гомоцистеинметилтрансферазы (метионинсинтазы). Биологическая функция метионина:
- Незаменимая аминокислота
Биологическая функция метионина:
- Незаменимая аминокислота
- Компонент аминоацил тРНК биосинтазы
- Компонент метаболизма глицина, серина и трианина
- Компонент гистидинового обмена
- Компонент метионинового метаболизма
- Компонент селеноаминокислотного метаболизма
- Компонент тирозинового метаболизма
Ферменты метаболизма метионина представлены:
- Метионин синтазой
- Тирозин аминотрансферазой
- S-аденозилметионин синтетазой изоформой 2 типа
- Арсенит метилтрансферазой
- Индометиламин Nметилтрансферазой
- S-аденозилметионин синтетазой изоформой 1 типа
- Бетаин-гомоцистеин Sметилтрансферазой 1.
- Метионил-tРНК синтетазой, цитоплазматической
- Метионин аденозилтрансферазой 2 субчастицей бета.
Нарушение процессов реметилирования (образования метионина из гомоцистеина), происходящее из-за дефицита ферментов MTHFR и MTRR приводит к развитию ряда патологических состояний, таких как: атеросклерозы; атеротромбозы; дефект незаращения невральной трубки; инфаркты; нарушение расхождения хромосом в оогенезе и повышает риск рождения детей с синдромом Дауна. Метилирование ДНК заключается в присоединении метильной группы к цитозину в составе CpG-динуклеотида в позиции С5 цитозинового кольца.
Полиморфизм ДНК — это наличие различий последовательности ДНК в конкретном локусе. Фермент MTHFR: Дефицит фермента МTHFR →снижение метилирования ДНК → избыточное накопление гомоцистеина и метионина. В случае сниженной активности фермента МTHFR во время беременности усиливается влияние тератогенных и мутагенных факторов внешней среды.
Снижение активности МТHFR по материнской линии приводит к увеличению рождения детей с трисомией хромосомы 21 в 1, 9 раза. Фермент MTRR. Ген MTRR кодирует аминокислотную последовательность фермента метионин синтазы редуктазы. Одной из функций фермента МTRR является обратное превращение гомоцистеина в метионин. Ген MTRR локализован на 5р15.3-р.15.2. Замена аминокислотного остатка изолейцина → метионин в позиции 66. В результате этой замены функциональная активность фермента снижается, что приводит к повышению риска нарушений развития плода - дефектов невральной трубки, синдрому Дауна. Метилирование белков определяет их функциональную активность, метилирование фосфолипидов – структуру мембран и обеспеченность организма незаменимыми жирными кислотами. Метилирование ДНК играет ведущую роль в формировании и поддержании эпигенетической изменчивости – наследственного динамического процесса, определяющего степень активности генов. Профиль метилирования значительно влияет на функциональное состояние генов и стабильно передается в ряду клеточных поколений. Исходя из этого обстоятельства для организмов с большой продолжительностью жизни и интенсивной тканевой регенерацией необходима надежная система эпигенетической наследственности. Дестабилизация генома наступает в случае изменения эпистатуса. Известен тот факт, что вирусные последовательности, попав в человеческие клетки, могут подвергаться метилированию, которое приводит к блокировке транскрипции и дальнейшей элиминации вируса. Возникают предположения, что роль метилирования ДНК как компонента клеточной системы, предназначенной для уничтожения чужой или излишней ДНК (или подавления ее функции) сохраняется, по-видимому, на протяжении всей жизни [32]. На примере фолатного цикла можно увидеть механизм запуска дестабилизации генома. Фолатный цикл является сложным каскадным процессом. В нем задействовано большое количество ферментов, для успешной работы которых необходимо наличие фолиевой кислоты в достаточном количестве и витаминов группы В. В этом цикле происходит перенос метильных групп, осуществляется метаболизм гомоцистеина, избыток которого превращается в незаменимую аминокислоту метионин [15]. В свою очередь, метионин превращается в S-аденозилметионин (SАМ), который является в клетке основным донором метильных групп, необходимых для синтеза и метилирования ДНК, РНК, белков и фосфолипидов. Дефицит фолиевой кислоты и витаминов группы В, связанный с особенностями диеты, а также мутации в генах фолатного обмена, обусловливающие снижение активности ферментов, приводят к избыточному накоплению гомоцистеина в крови и, как следствие, нарушению процессов метилирования в клетках. В работе обсуждается гипотеза – дефицит ферментов генов фолатного цикла сопровождается, в частности, недостатком метильных групп, что в свою очередь, оказывает влияние на эпигенетический статус, приводя к запуску эпимутаций и как следствие – манифестации некоторых эпигенетических и онкогенетических синдромов. На большом клиническом материале с использованием методов клинической протеогеномики показана роль дефицита ферментов фолатного цикла и гипометилирования в манифестации некоторых форм моногенной и хромосомной патологии. Вступление. Поступающие в организм химические вещества, как известно, преобразуются в циклах, которые содержат определенное количество ступеней превращения. Каждая ступень превращения продукта требует участия определенного фермента, с помощью которого образуется новый продукт. Для нормального биосинтеза белка, таким образом, требуется, чтобы гены, которые кодируют ферменты, не имели мутаций, а кофакторы поступали в организм в достаточном количестве и адекватно им усваивались. В противном случае нарушение работы фолатного цикла сказывается на жизнедеятельности клетки, органа, организма и популяции. В последние три десятилетия нарушение фолатного цикла широко обсуждается как возможная причина манифестации распространенных заболеваний, о чем свидетельствуют более тысячи статей, опубликованных в мировой печати, посвященных проблеме нарушения обмена метионина и полиморфным генам фолатного цикла. Установлено, что метилирование ДНК определяет взаимодействие между ДНК и белками, распознающими модифицированные основания, регулирует генную экспрессию через механизм компактизации-декомпактизации хроматина, являясь основным модификатором генома [5,9,13]. Гипометилирование может приводить к нестабильности хромосом, потере защиты от вредных рецессивных мутаций и, возможно, к глобальному снижению активности генома, что сказывается на клинической манифестации наблюдаемых больных. При длительном наблюдении за больными с наследственной патологией, ассоциированной с дефицитом ферментов фолатного цикла, нами отмечена волнообразная манифестация клинических признаков конкретного наследственного заболевания и нарушения обмена метионина, что заставляет говорить о фенои генотипическом проявлении синтропии. Медицина стоит на пороге перемен в понимании болезней человека: ближайшее будущее медицины – редкие наследственные болезни. На смену симптоматическому лечению наследственной патологии приходит патогенетическое как переходной этап к этиологическому. Такой подход приобретает реальные черты в связи с бурным развитием молекулярной генетики, которая все чаще позволяет найти «мишени болезни» - точечные мутации или полиморфные гены предрасположенности к мультифакториальным заболеваниям. Это и есть зарождение персонализированной (индивидуальной) медицины. Наиболее распространенные минимальные отличия генетических характеристик людей получили название однонуклеотидного полиморфизма – однообразные вариации среди разных людей. Генный полиморфизм - это изменения в последовательностях структуры генов, встречающихся с различной частотой и имеющих влияние на функцию белков. Индивидуальность полиморфизмов может приводить к самым разным фенотипическим последствиям. Те замены, которые радикально меняют функции биохимического продукта гена, относятся к классическим «точечным» мононуклеотидным мутациям и являются причиной наследственных болезней в семье. Те замены, которые не приводят к значительному изменению первичного генетического продукта, вызывают предрасположенность к болезням вместе с факторами внешней среды и общим генетическим фоном. Это – полиморфные гены, предназначение которых в норме позитивное, направленное на адаптацию нашего вида к условиям среды всей популяции. Любые изменения в геноме, в том числе и полиморфных генах, связаны с соматическим, психическим и репродуктивным здоровьем. Это обстоятельство заставило нас подойти с позиций новой генетики (геномики) к изучению роли полиморфных генов фолатного цикла в возникновении и исходах наследственных заболеваний человека – сосудистых, неврологических, хромосомных, скелетных. В течение 40 лет с момента описания гомоцистинурия считалась очень серьезным и даже угрожающим жизни состоянием, но редким по частоте. В последние годы стало очевидным существование «мягких» форм болезни, при которых поражается один орган или система, но от этого его опасность не становится меньше. Официально признанной в Европе стала частота классической ГЦУ 1:20000. В последние годы появились данные о причастности к развитию гомоцистинурии не только дефицита фермента CBS, для которого кофактором является витамин В6 (80% больных имеют эту форму патологии), но и недостаточности метилентетрагидрофолатредуктазы, которая нарушает реметилирование гомоцистеина в метионин (15% больных с ГЦУ) и дефицит метилкобаламина (витамина В12), нарушающий тот же процесс (5% пациентов). Фолатный цикл стал в центре проблемы. Человек получает с пищей восстановленные полиглютаматы, которые гидролизуются до моноглютамата. В тонком кишечнике фолат-моноглютамат всасывается и восстанавливается до тетрагидрофолата, становясь биологически активным. Происходит их метилирование и в крови тетрагидрофолат метилирует до 5'- метилтетрагидрофолата (5'-MTHF). Источником 5'-MTHF является и пища, и кишечно-печеночный цикл: птерилмоноглютамат всасывается из кишечника, поступает в печень, здесь метилируется до 5'-MTHF, который затем выделяется с желчью в кишечник, всасывается в нем и распространяется с кровотоком. Поступление 5'-MTHF в ткани осуществляется с помощью эндоцитоза при участии 3-х форм специфических фолатных рецепторов. Внутри клетки 5'-MTHF служит донором метильных групп и основным источником тетрагидрофолата. Тетрагидрофолат является акцептором большого числа моноуглеродных групп, превращается в разные виды фолатов – специфических коферментов для многих клеточных реакций – 5 формилтетрагидрофолат (фолиневая кислота, лейковорин), 10- формилтетрагидрофолат и 5,10- метилентетрагидрофолат. Частота полиморфизмов, связанных с метаболизмом фолатов и гомоцистеина, значительно варьирует среди различных этнических групп, что в настоящее время может быть подтверждено популяционным скринингом с помощью генотипирования. До настоящего времени не был проведен анализ, который бы оценил частоты полиморфных генов, вовлеченных в метаболизм фолатов и гомоцистеина в украинской популяции. Настоящее исследование представляет собой попытку оценить частоту полиморфных генов MTHFR, MTRR, RFC-1 в украинской популяции, произвести уникальную оценку фено- и генотипических ассоциаций при распространенных полиморфных генах, выяснить существование закономерной связи между развитием некоторых эпигенетических болезней и нарушением метилирования ДНК вследствие дефицита ферментов фолатного цикла. Стремление охватить одновременно в условиях комплексного изучения патологических процессов все уровни жизни может быть реализовано лишь при многопараметрическом, пролонгированном во времени, многоэтапном исследовании.
В процессе неонатального скрининга выявлено 40,7% гетерозиготных носителей С677Т MTHFR, гомозиготных носителей 677Т - 7,04%. А частота мутантного аллеля MTHFR составила 27,39% (табл.1). Частота гетерозиготных и гомозиготных носителей А66G MTRR оказалась выше (43,0% и 35,5%, соответственно). А частота мутантного аллеля MTRR составила 57%. По результатам скрининга полиморфизмов в генах системы фолатного цикла (MTHFR, MTRR), который проводился с 2008г. в Харьковском специализированном медико-генетическом центре, обследовано 1938 пациентов с дефицитом ферментов фолатного цикла. Рассчитаны частоты соответствующих аллелей.
По данным многих исследователей, в частности [51], полиморфизм MTHFR C677T в гомозиготном состоянии является высоким показателем риска развития дефекта незаращения невральной трубки (ДНТ) (у матерей, имеющих данный вариант полиморфизма, риск рождения детей с таким пороком возрастает на 60%). В нашей выборке процент гомозиготных носителей C677T составил 7.0%. Данный показатель ниже по сравнению с аналогичным в европейской популяции (11.3%) [31]. Существуют различные гипотезы, одна из которых предполагает, что носители высокой частоты аллеля 677T могли иметь селективные преимущества в естественном отборе, поскольку во время голода снижение активности MTHFR приводит к снижению реметилирования гомоцистеина, и таким образом, тетрагидрофолат сохраняется для жизненно важного синтеза ДНК и РНК. Полиморфизм MTRR A66G является распространенным для большинства популяций. Тем не менее, и в исследовании, которое было проведено ранее Matalon R., Grechanina E. et al. [31] и в проведенном нами исследовании была обнаружена высокая частота данного аллеля, по сравнению с частотами других популяций (табл.1). Кроме того, в украинском населении наблюдался высокий процент (35.5%) гомозиготных носителей A66G (в европейской популяции 29.6%) по данным [27]. В выборке пациентов процент гомозиготных носителей составил 37.0%. Для гомозиготного генотипа MTRR A66G риск развития ДНТ более высок, даже вне зависимости от приема фолиевой кислоты [41]. По данным [21] наличие компаунда гомозиготных генотипов MTHFR C677T и MTRR A66G связано с 3-х и 4-х кратным риском развития ДНТ. Также гомозиготный генотип A66G может сопровождаться низкими уровнями кобаламина, в связи с чем, для матерей риск повышается почти в 5 раз. Таким образом, полиморфизм MTRR A66G может увеличивать риск развития ДНТ в популяции украинцев как независимо, так и в сочетании с другими мутациями и внешними факторами. Учитывая полученные данные по полиморфизмам MTHFR C677T и MTRR A66G, мы исследовали частоты их компаундов.
Cочетание полиморфных вариантов генов MTHFR и MTRR, обуславливая различную функциональную активность белковых продуктов, характеризовалось определенным спектром биохимических реакций, затрагивающих как фолатный цикл, так и ассоциированные с ними другие стороны метаболизма. Эти данные станут предметом нашего последующего сообщения. Нами установлены определенные фено- и генотипические ассоциации при изученных генетических компаундах. Отметчено наибольшее разнообразие нозологических форм при гетерозиготном компаунде С677Т Htzg/А66G Htzg (167 пациентов) и при сочетании С677Т Htzg/А66G Hmzg (159 пациентов): в частности, при репродуктивной патологии Htzg/Htzg – 3, Htzg/Hmzg – 10, Hmzg/Hmzg – 1; при сосудистой патологии Htzg/Htzg – 30, Htzg/Hmzg – 24; Hmzg/Hmzg – 4; при хромосомной патологии - Htzg/Htzg – 15, Htzg/Hmzg – 9.
Далее мы попытались составить фенотипические портреты, соответствующие определенным полиморфизмам и их компаундам. Нами отмечены и редкие осложнения, ассоциируемые с классической гомоцистинурией: фатальная цереброваскулярная окклюзия, хронический (подострый) панкреатит, экстрапирамидные симптомы (дистония, миоклонус, оромандибулярная дистония).
Вначале мы попытались сгруппировать в соответствии с характером полиморфизма фенотипические признаки и получили в обобщенном виде такие данные. Для этого обследовано 652 пациента. У 71 (10.9 %) пациента полиморфизмы не выявлены. У 581 (89.1 %) выявлены полиморфизмы, характеризующиеся следующими клиническими проявлениями. Гомозиготные и гетерозиготные носители MTHFR C677T и MTRR A66G во многом оказались сходными потому, что их объединял общий патогенетический признак – гипергомоцистеинемия. У 17 (2.71 %) пациентов обнаружен гомозиготный компаунд 677Т MTHFR и 66G MTRR. Фенотипы гомозиготных компаундов были малочисленны и не позволили сделать определенных выводов, хотя четко прослеживалась их связь с дефицитом ВНМТ. У 22 (3.5 %) пациентов обнаружено сочетание 677Т MTHFR в гомозиготном состоянии и 66А/G MTRR в гетерозиготном состоянии. Гомозиготные компаунды 677Т MTHFR и гетерозиготные 66А/G MTRR отмечались значительным поражением вен – нижних конечностей, внутренних органов, ягодиц, нижней части тела. Компаунды htrz С677T MTHFR и hmzg A66G MTRR сопровождались сочетанием разных фенотипов, хотя регулирующая роль фолатного цикла прослеживалась. Нарушение репродуктивной функции семьи, отягощенной носительством полиморфных генов сопутствовало 7.8% обследованных. У 109 (17,38 %) пациента обнаружен гетерозиготный компаунд 677 С/Т MTHFR и 66А/G MTRR. При нем прослеживают ассоциации, свойственные мягкой гомоцистинурии с самостоятельными нозологическими формами болезни (нарушением жирных кислот, органические ацидурии, трисомии 21). При двух гетерозиготах фенотипические проявления оказались наиболее разнообразными и чаще сочетались с клиническими проявлениями других точечных мутаций (с-м Цельвегера, с-м Ретта). Учитывая тот факт, что дефицит ферментов фолатного цикла приводит к снижению метилирования ДНК и как следствие, к нарушению расхождения хромосом и риску рождения ребенка с синдромом Дауна, мы детектировали полиморфизмы генов системы фолатного цикла и проанализировали частоты генотипов и аллелей полиморфизмов С677Т и А66G в выборке пациентов с синдромом Дауна. Общая выборка составила 93 пациента, среди которых 48 матерей, имеющих детей с синдромом Дауна и 45 детей с синдромом Дауна. В выборке матерей, имеющих детей с синдромом Дауна частота гетерозиготных носителей СТ MTHFR составила 43.7%, гомозиготных ТТ – 4.2%, с генотипом СС – 52.1%. Частота гомозиготного аллеля Т– 26.0%. Распределение частот полиморфизма А66G гена MTRR соответствовало следующим значениям: индивиды с гетерозиготным генотипом АG – 31.2%, с гомозиготным генотипом GG – 45.8%, с нормальным генотипом АА – 23.0%. Частота гомозиготного аллеля G – 61.4%. В выборке детей с синдромом Дауна доля индивидов с гетерозиготным генотипом С677Т MTHFR составила 37.8%, с гомозиготным ТТ – 6.7%, с генотипом СС – 55.5%. Частота гомозиготного аллеля 677T MTHFR – 25.5%. При расчете частот полиморфизма А66G MTRR получены следующие значения: индивиды с гетерозиготным генотипом АG – 55.6%, с гомозиготным генотипом GG – 24.4%, с нормальным генотипом АА – 20.0%. Частота гомозиготного аллеля G – 52.2%.
Эпигенетическая регуляция активности генов: